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1Abstract— Malware is a software that is created to distort 

or obstruct computer or mobile applications, gather sensitive 

information or execute malicious actions. These malicious 

activities include increasing access through personal 

information, stealing this valuable information from the system, 

spying on a user’s activity, and displaying unwanted ads. 

Nowadays, mobile devices have become an essential part of our 

times, therefore we always need active algorithms for malware 

detection. In this paper, supervised machine learning 

techniques (SMLTs): Random Forest (RF), support vector 

machine (SVM), Naïve Bayes (NB) and decision tree (ID3) are 

applied in the detection of malware on Android OS and their 

performances have been compared. These techniques rely on 

Java APIs as well as the permissions required by employment 

as features to generalize their behavior and differentiate 

whether it is benign or malicious. The experimentation of 

results proves that RF has the highest performance with an 

accuracy rate of 96.2%. 

 
Keywords—Machine learning techniques, Malware 

Detection, Android OS, Java applications. 

I. INTRODUCTION 

In recent years, the use of smartphones has been exploded 

[1]. These devices are everywhere in our daily lives [2]. This 

can be described by the various options these devices offer, 

such as third-party applications, mobile Internet connections, 

and the presence of cameras [3] [4]. According to the study 

conducted by the International Association of Mobile 

Operators GSMA [5], the number of mobile phone users 

worldwide will surpass 8 billion at the end of 2020, 

compared to the 5,600, million with which it closed 2016.  

As the market for smartphone consumption has grown 

exorbitantly, the vulnerability of its operating systems 

against computer attacks has also increased. Hence, the 

safety of these devices must be a priority both in companies 

and in personal use. There are many mobile OSs on the 

market: Windows Phone, iOS, and Android OS [6] [7]. But 

Android is the most used in the world, according to the 

statistics for the year 2019, the number of users using 

Android OS reached around 2.5 billion 

In 2018, Kaspersky Lab's products for the protection of 

mobile devices [8] recorded a notable increase in the number 

of malware package installations, which exceeded 9 million, 

almost triple that of 2016. Today, Mobile malware [9] [10] 

is on the rise and becoming more complex. Besides, more 

than 130,000, mobile banking trojans and more than 

255,000 trojan were detected [11]. By comparison, more 
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than 10 million malware installation packages were detected 

between 2006 and 2016, and around 3 million malwares 

were detected in 2015. Figure 1 shows various types of 

malware. 

 
Fig. 1.  Malware types 

Machine learning (ML) is the branch of Artificial 

Intelligence that is applied to the investigation of 

agents/programs that learn or evolve based on their 

experience [12] [13]. The use of the various ML classifiers 

to detect malware apps has potential advantages over 

increased accuracy. it is possible for the ML to be applied 

efficiently in the extraction of information from large data 

sets, and consequently, in the detection of malware on 

Android [14]. The reason for the high number of malware 

applications (MSA- Malicious software application) on Play 

Store is that Android OS is an open source and the 

applications installed on the market are not sufficiently 

passed through security scans. Many solutions have been 

suggested for this, using different techniques such as Neural 

Networks, SVM, ID3, and NB [15] [16]. 

This investigation presents a malware detection system in 

Android with an approach based on the permissions required 

by Java applications and APIs, from which more specific 

information is obtained about the actions that the application 

tries to execute [17] [18]. The SVM, ID3, NB and RF 

supervised learning methods are used to classify samples. 

The remainder of this article is as follow: Section 2 

provides a description of the proposal. Results and 

discussion are described in Section 3. Lastly, the conclusions 

in section 4. 

II. DESCRIPTION OF STUDY 

A. Samples 

The choice of samples depends on the collection of 

ZoneAlarm applications (for security apps). Today, this 

company has an anti-virus application and it is considered 

one of the ten most important applications in the year 2020 

for anti-virus, and trusted by nearly 100 million users 

worldwide. Originally, a collection of 200 good apps and 

200 other apps with malicious behavior were made trying to 

cover a certain randomness. The collection of kind 
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applications was chosen to try to be diverse and reflect the 

different types of applications present in the play store app; 

and also, that they were proportional to the number of 

samples that exist in each type of application. The following 

aspects were taken into account when taking the set of 

malicious samples: 

i. Various classifications according to the behavior of the 

ones that have the greatest impact: SMS Trojans, 

downloaders and banks, root editors (acquire 

administrator privileges and take control of the 

device), extortionists and criminals (blocking & 

encryption ransomware), adware (advertising 

software) and malicious tools (malware tool). 

ii. Different variants within the same family of malicious 

programs, and more than one family (names according 

to antivirus) within a classification according to 

behavior. 

iii. Applications of similar and different sizes within the same 

name and variants of the malicious program. 

For analysis, a selection of 4245 samples from the same 

repository is made, of which 2325 are malicious and 1920 

are benign. In addition, for the set of samples with malicious 

behavior it is discovered that there is at least one of each 

variant for each family already in the repository. 

B. Feature Extraction 

Many solutions have been proposed to protect Android 

users from serious malware threats. In many of these 

features’ extraction is based on the permissions asked by the 

application. Nevertheless, mechanisms that are based only 

on permits fail for various reasons [19][20]: 

i. The existence of certain permission in the 

AndroidManifest.xml of the application does not 

inevitably mean that it is applied within the code. 

ii. A large number of requested permits, particularly experts, 

are not used within the code of the application itself, 

but are claimed by Ads packages. 

iii. Malware can have malicious behavior without requiring 

any permission. 

The purpose of this paper is to beat the deficiencies of a 

mechanism-based entirely on permissions and create a 

classifier for Android apps that can be applied in malware 

detection. To do this, at the feature extraction stage, it was 

decided to combine permissions and API calls.  

C. Permissions  

In the Android OS, the permissions requested by the app 

play an important part in managing access rights [21] [22]. 

Besides, all apps do not have any permission to access user 

data and change system settings. Android application 

package (APK) files generally consist of 

AndroidManifest.xml, classes.dex, maintenance and asset 

files. In the APK preprocessing stage, application samples 

are converted to source code and attributes are taken from it. 

Throughout the installation, the user must allow the app to 

access all the resources requested by it. Programmers should 

state the requested permissions for support in the 

AndroidMani-fest.xml. AndroidManifest.xml contains the 

name of the APK, the permissions, and some information on 

the version required by the application. The structure to 

declare permission in the license file is presented in Figure 

2. 

 
Fig. 1. The declaration of permissions in the An-droidManifest.xml. 

To apply them as input in the MLTs, the An-

droidManifest.xml is processed, uses-permission tags are 

searched and the string that represents the type of permission 

is obtained. A binary vector is then generated that indicates 

whether the permit is present or not in the analyzed app as 

shown in Figure 3 and figure 4 show XML file of 

FakeNetflix malware. 

 

Fig. 3. Permission statement 

 

Fig. 4. FakeNetflix malware.xml 

D. API Calls 

In addition to permissions, Android applications have 

several malicious features, such as code [23]. Source code is 

not always available, but can anyone get a lot of information 

by decomposing jar type files. The methods called by the 

Android and Java APIs are one of the characteristics that can 

be obtained from these files. To obtain the disassembled 

code, the following steps were followed: Unzip all android 

file (.apk file), Convert the classes.dex file to .jar using the 

d2j-dex2jar.sh tool, and write the disassembled code to a file 

using a combination of the jar and java commands. 

Next, the code is processed and the API calls are extracted 

and added to the binary vector generated when the 

permissions are extracted. The main challenge in obtaining 

this information is that many developers use obfuscation 

techniques to protect their code or avoid this type of 

analysis. The obfuscation techniques commonly used work 

by having classes and methods with a single letter (‘a’, ‘b’, 

etc.) and calling the desired methods indirectly through 

them.  

Another challenge is that if you include the classes of the 

Android APIs (e.g. android.app.Activity), classification 
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accuracy is lost. This is due to the large size of the API 

(several thousand classes) compared to the code that calls it, 

which leads to data noise. For this reason, this research only 

includes the Java API classes. These provide more specific 

information about the actions the applications try to perform.  
 

E. Feature Selection 

Feature selection is a key part of machine learning. This 

step leads to the process of reducing the inputs for analysis 

and processing or getting the most important entries and 

very necessary for various reasons. One of these reasons is 

that the selection of characteristics implies a certain degree 

of cardinality reduction to impose a cut in the number of 

attributes that will be taken into account when creating a 

model. Too many attributes can lead to overtraining as the 

model becomes more complex to the number of available 

data. Also, if the data set is large, most data mining 

algorithms will need a much larger learning data set. This 

step not only enhances the quality of the model but also 

gives the modeling process more effective. If the user uses 

unnecessary columns when creating the model, more RAM 

and CPU will be required during the training process, and 

the finished model will need more storage space [24].  

Another reason for feature selection is that redundant or 

insignificant data makes it more difficult to detect important 

patterns. In the process of extracting features, a result of 

2355 licenses and 2758 API calls were obtained, which 

made the attribute vector large and presented the 

aforementioned drawbacks. To solve this problem, it was 

determined to assign a value to each attribute. This is 

calculated by the difference between the percentage of 

malicious and benign applications that have a specific 

characteristic with respect to the total applications. In this 

way, values with a positive sign correspond to the attributes 

that occur most often in applications with malicious behavior 

and those that have a negative sign correspond to the most 

recurrent ones in healthy ones. In this paper it was decided 

to select the characteristics where the absolute value of the 

values is greater than a certain threshold. In this way, the 

attributes with the highest rate of benignity and malice are 

accepted. Tables 1 to 4 show a summary of the values 

granted to the attributes. 

TABLE I. TOP 10 MOST FREQUENT API CALLS IN BENIGN 

APPLICATIONS. 

API calls Value 

java/util_f/GregorianCalendar_file -28 

java/security_doc/SecureRandom_file -25 

java/util_f/concurrent/ConcurrentLinkedQueue_file  -25 

java/util_f/Scanner_file -23 

java/lang_doc/IndexOutOfBoundsException_file  -21 

java/lang_doc/Number_file  -21 

java/IO_f/FilterOutputStream_file  -20 

java/util_f/concurrent/CopyOnWriteArrayList_file  -20 

java/util_f/logging/Logger_file -19 

java/nIO_f/channels/FileChannel_file -19 

 

 

 

 

 

 

 

TABLE II. TOP 10 MOST FREQUENT API CALLS İN MALİCİOUS 

APPLİCATİONS. 

API calls Value 

java/util_f/zip_rar/Deflater_file  40 

java/lang_f/Process_file  36 

java/util_f/zip_rar/Inflater_file 35 

java/lang_f/InstantiationException_file 31 

java/lang_f/ProcessBuilder_file 31 

java/lang_f/NoSuchMethodException_file  31 

java/lang_f/ClassNotFoundException_file 30 

java/net_f/Proxy_file  29 

java/IO_f/FileReader_file  29 

java/security_f/spec/PKCS8EncodedKeySpec_file  27 

TABLE III. TOP 10 MOST FREQUENT PERMİTS İN BENİGN 

APPLİCATİONS. 

Permissions Value 

Com_f.android.vending.billing_file -33 

Com_f.android.vending.check_license_file  -22 

Com_f.google_site.c2dm.permission_app.  

receive-file  

-17 

android.permission_app.collection_photo_file  -7 

android.permission_app.apply_credentials_file -6 

android.permission_app.modify_audio_ file  -4 

android.permission_app.bluetooth_file  -4 

android.permission_app.write_sync_ file -4 

android.permission_app.read_sync_ file -4 

android.permission_app.record_audio_file -3 

 TABLE IV. TOP 10 MOST FREQUENT PERMİSSİONS İN 

MALİCİOUS APPLİCATİONS. 

Permissions Value 

android.permission_app.sysm_alert_ file 94 

android.permission_app.rece_boot_ file 94 

android.permission_app.get_jobs_file 91 

Com_f.android.statrt.permission_app.install_ 

shortcut_file 

91 

android.permission_app.send_message_file 90 

android.permission_app.read_tphone_state_file  74 

android.permission_app.receive_message_file  72 

android.permission_app.read_message_file 72 

android.permission_app.change_wifi_file  71 

android.permission_app.change_network_ file 70 

 

III. RESULTS AND DISCUSSION 

This section shows an analysis of the results obtained with 

each of the SMLTs mentioned above (in abstract) using 

permissions and API calls. The dataset generated for 

Android MSA detection was evaluated on open-source 

WEKA software. WEKA [25] is a software that includes 

SMLTs used for data mining tasks. WEKA includes many 

tools for data preprocessing, clustering, visualization, 

classification, association rules, and, relationship search. In 

this context, the success of SMLTs was evaluated according 

to accuracy (Accr): TNR (True Negative Rate), TPR (True 

Positive Rate), f-measure tests. 
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Hither, True Positive (TP) is the number of times that 

Android apps that are malicious are detected; False Negative 

(FN) is the number of times that malicious applications are 

detected normally; False Positive (FP) is the number of 

times that normal applications are detected as malicious; 

True Negative (TN) gives the number of times that normal 

applications are normally detected. The accuracy test 

determines the rate of the number of perfectly classified 

samples to the total number of samples. TPR shows the 

possibility of labeling malicious applications as malicious, 

while TNR indicates the possibility of labeling normal 

applications as normal. The harmonic average of TPR and 

TNR values, f-measure, provides the evaluation of TPR and 

TNR together. 

In addition, the dataset including of 325 samples applied 

in this study was mixed randomly and 80% was determined 

as the learning set and the remaining 20% was determined as 

the test set. On the other hand, the learning set includes of 

183 samples and also the test set includes of 46 samples. 

In this paper, classification was made by using a dataset 

consisting of normal and malicious apps and SMLTs. The 

method that performs the classification process most 

successfully with the SMLTs used is determined according 

to the Accuracy, TPR, TNR and f-measure tests and the 

results are presented in Table 5. From this table, the RF 

classifier performance is higher than the others in terms of 

determined metrics. As can be noticed from the confusion 

matrix in Table 6 for Android MSA detection of the RF 

classifier, 20 malicious applications are classified as 

malicious. In other words, the TP value of the confusion 

matrix is 20. No malicious practice is classified as normal. 

So, the FN value in the confusion matrix is 0.2 of the normal 

applications are determined to be malicious. This means that 

the FP value in the confusion matrix is 2.24 applications that 

are normal are classified as normal. This indicates that the 

TN value in the confusion matrix is 24. 

TABLE V. CLASSİFİCATİON OF RESULTS. 

Criterion ACCR TPR TNR f-measure 

SVM 84.5% 86% 85.8% 81.9% 

ID3 80.7% 80.2% 82.1% 79.9% 

NB 91.4% 95% 90.5% 88.7% 

RF 96.2% 100% 94.7% 94.9% 

TABLE VI. THE CONFUSİON MATRİX OF RANDOM FOREST (RF) 

ALGORİTHM 

Estimate 

Real Malicious Benign 

Malicious 20 0 

Benign 2 24 

 

When the RF matrix confusion matrix is evaluated in terms 

of cost, it can be presented as an absolute success that the 

system can detect 20 out of 20 MSAs perfectly. However, 

contrary to the fact that 24 of 26 normal applications are 

determined to be normal, 2 of them are classified as 

malicious and this indicates that the system should be 

improved since it will create dissatisfaction for users. In 

brief, although the FN value is lower than the FP value in 

machine learning, it is necessary to reduce both 

classification errors in terms of cost. 

IV. CONCLUSIONS 

Mobile malware is a constant threat to Android users. As 

these devices take center stage in our daily lives, their safety 

and protection become more important. Therefore, the 

development of effective new techniques for malware 

detection should be a priority. 

In this paper, MSA was determined with a different 

SMLTs on a dataset including of 325 samples in total. In 

comparison made on the performance of these algorithms, 

the RF classifier was found to be more successful. From the 

results obtained, it is understood that SMLTs are an effective 

solution for Android MSA detection and that more 

successful results can be obtained by developing. In this 

paper, significant results were achieved, 96.2% accuracy in 

the test stage at best. However, every day the evasion 

techniques adopted by the attackers continue to be refined, 

which means that work must continue in this direction. 
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