
DATA SCIENCE AND APPLICATIONS, VOL. 3, NO. 2, 5-9, 2020

5

1Abstract— Malware is a software that is created to distort

or obstruct computer or mobile applications, gather sensitive

information or execute malicious actions. These malicious

activities include increasing access through personal

information, stealing this valuable information from the system,

spying on a user’s activity, and displaying unwanted ads.

Nowadays, mobile devices have become an essential part of our

times, therefore we always need active algorithms for malware

detection. In this paper, supervised machine learning

techniques (SMLTs): Random Forest (RF), support vector

machine (SVM), Naïve Bayes (NB) and decision tree (ID3) are

applied in the detection of malware on Android OS and their

performances have been compared. These techniques rely on

Java APIs as well as the permissions required by employment

as features to generalize their behavior and differentiate

whether it is benign or malicious. The experimentation of

results proves that RF has the highest performance with an

accuracy rate of 96.2%.

Keywords—Machine learning techniques, Malware

Detection, Android OS, Java applications.

I. INTRODUCTION

In recent years, the use of smartphones has been exploded

[1]. These devices are everywhere in our daily lives [2]. This

can be described by the various options these devices offer,

such as third-party applications, mobile Internet connections,

and the presence of cameras [3] [4]. According to the study

conducted by the International Association of Mobile

Operators GSMA [5], the number of mobile phone users

worldwide will surpass 8 billion at the end of 2020,

compared to the 5,600, million with which it closed 2016.

As the market for smartphone consumption has grown

exorbitantly, the vulnerability of its operating systems

against computer attacks has also increased. Hence, the

safety of these devices must be a priority both in companies

and in personal use. There are many mobile OSs on the

market: Windows Phone, iOS, and Android OS [6] [7]. But

Android is the most used in the world, according to the

statistics for the year 2019, the number of users using

Android OS reached around 2.5 billion

In 2018, Kaspersky Lab's products for the protection of

mobile devices [8] recorded a notable increase in the number

of malware package installations, which exceeded 9 million,

almost triple that of 2016. Today, Mobile malware [9] [10]

is on the rise and becoming more complex. Besides, more

than 130,000, mobile banking trojans and more than

255,000 trojan were detected [11]. By comparison, more

Manuscript received July 24, 2020; accepted December 22, 2020.

*Corresponding author: mr.maad.alnaimiy@baghdadcollege.edu.iq

than 10 million malware installation packages were detected

between 2006 and 2016, and around 3 million malwares

were detected in 2015. Figure 1 shows various types of

malware.

Fig. 1. Malware types

Machine learning (ML) is the branch of Artificial

Intelligence that is applied to the investigation of

agents/programs that learn or evolve based on their

experience [12] [13]. The use of the various ML classifiers

to detect malware apps has potential advantages over

increased accuracy. it is possible for the ML to be applied

efficiently in the extraction of information from large data

sets, and consequently, in the detection of malware on

Android [14]. The reason for the high number of malware

applications (MSA- Malicious software application) on Play

Store is that Android OS is an open source and the

applications installed on the market are not sufficiently

passed through security scans. Many solutions have been

suggested for this, using different techniques such as Neural

Networks, SVM, ID3, and NB [15] [16].

This investigation presents a malware detection system in

Android with an approach based on the permissions required

by Java applications and APIs, from which more specific

information is obtained about the actions that the application

tries to execute [17] [18]. The SVM, ID3, NB and RF

supervised learning methods are used to classify samples.

The remainder of this article is as follow: Section 2

provides a description of the proposal. Results and

discussion are described in Section 3. Lastly, the conclusions

in section 4.

II. DESCRIPTION OF STUDY

A. Samples

The choice of samples depends on the collection of

ZoneAlarm applications (for security apps). Today, this

company has an anti-virus application and it is considered

one of the ten most important applications in the year 2020

for anti-virus, and trusted by nearly 100 million users

worldwide. Originally, a collection of 200 good apps and

200 other apps with malicious behavior were made trying to

cover a certain randomness. The collection of kind

Malware Detection in Android OS using

Machine Learning Techniques

Maad M. Mijwil
1

1
Computer Techniques Engineering Department, Baghdad College of Economic Sciences University,

Baghdad, Iraq

Mijwil: Malware detection in Android OS using machine learning techniques

6

applications was chosen to try to be diverse and reflect the

different types of applications present in the play store app;

and also, that they were proportional to the number of

samples that exist in each type of application. The following

aspects were taken into account when taking the set of

malicious samples:

i. Various classifications according to the behavior of the

ones that have the greatest impact: SMS Trojans,

downloaders and banks, root editors (acquire

administrator privileges and take control of the

device), extortionists and criminals (blocking &

encryption ransomware), adware (advertising

software) and malicious tools (malware tool).

ii. Different variants within the same family of malicious

programs, and more than one family (names according

to antivirus) within a classification according to

behavior.

iii. Applications of similar and different sizes within the same

name and variants of the malicious program.

For analysis, a selection of 4245 samples from the same

repository is made, of which 2325 are malicious and 1920

are benign. In addition, for the set of samples with malicious

behavior it is discovered that there is at least one of each

variant for each family already in the repository.

B. Feature Extraction

Many solutions have been proposed to protect Android

users from serious malware threats. In many of these

features’ extraction is based on the permissions asked by the

application. Nevertheless, mechanisms that are based only

on permits fail for various reasons [19][20]:

i. The existence of certain permission in the

AndroidManifest.xml of the application does not

inevitably mean that it is applied within the code.

ii. A large number of requested permits, particularly experts,

are not used within the code of the application itself,

but are claimed by Ads packages.

iii. Malware can have malicious behavior without requiring

any permission.

The purpose of this paper is to beat the deficiencies of a

mechanism-based entirely on permissions and create a

classifier for Android apps that can be applied in malware

detection. To do this, at the feature extraction stage, it was

decided to combine permissions and API calls.

C. Permissions

In the Android OS, the permissions requested by the app

play an important part in managing access rights [21] [22].

Besides, all apps do not have any permission to access user

data and change system settings. Android application

package (APK) files generally consist of

AndroidManifest.xml, classes.dex, maintenance and asset

files. In the APK preprocessing stage, application samples

are converted to source code and attributes are taken from it.

Throughout the installation, the user must allow the app to

access all the resources requested by it. Programmers should

state the requested permissions for support in the

AndroidMani-fest.xml. AndroidManifest.xml contains the

name of the APK, the permissions, and some information on

the version required by the application. The structure to

declare permission in the license file is presented in Figure

2.

Fig. 1. The declaration of permissions in the An-droidManifest.xml.

To apply them as input in the MLTs, the An-

droidManifest.xml is processed, uses-permission tags are

searched and the string that represents the type of permission

is obtained. A binary vector is then generated that indicates

whether the permit is present or not in the analyzed app as

shown in Figure 3 and figure 4 show XML file of

FakeNetflix malware.

Fig. 3. Permission statement

Fig. 4. FakeNetflix malware.xml

D. API Calls

In addition to permissions, Android applications have

several malicious features, such as code [23]. Source code is

not always available, but can anyone get a lot of information

by decomposing jar type files. The methods called by the

Android and Java APIs are one of the characteristics that can

be obtained from these files. To obtain the disassembled

code, the following steps were followed: Unzip all android

file (.apk file), Convert the classes.dex file to .jar using the

d2j-dex2jar.sh tool, and write the disassembled code to a file

using a combination of the jar and java commands.

Next, the code is processed and the API calls are extracted

and added to the binary vector generated when the

permissions are extracted. The main challenge in obtaining

this information is that many developers use obfuscation

techniques to protect their code or avoid this type of

analysis. The obfuscation techniques commonly used work

by having classes and methods with a single letter (‘a’, ‘b’,

etc.) and calling the desired methods indirectly through

them.

Another challenge is that if you include the classes of the

Android APIs (e.g. android.app.Activity), classification

DATA SCIENCE AND APPLICATIONS, VOL. 3, NO. 2, 5-9, 2020

7

accuracy is lost. This is due to the large size of the API

(several thousand classes) compared to the code that calls it,

which leads to data noise. For this reason, this research only

includes the Java API classes. These provide more specific

information about the actions the applications try to perform.

E. Feature Selection

Feature selection is a key part of machine learning. This

step leads to the process of reducing the inputs for analysis

and processing or getting the most important entries and

very necessary for various reasons. One of these reasons is

that the selection of characteristics implies a certain degree

of cardinality reduction to impose a cut in the number of

attributes that will be taken into account when creating a

model. Too many attributes can lead to overtraining as the

model becomes more complex to the number of available

data. Also, if the data set is large, most data mining

algorithms will need a much larger learning data set. This

step not only enhances the quality of the model but also

gives the modeling process more effective. If the user uses

unnecessary columns when creating the model, more RAM

and CPU will be required during the training process, and

the finished model will need more storage space [24].

Another reason for feature selection is that redundant or

insignificant data makes it more difficult to detect important

patterns. In the process of extracting features, a result of

2355 licenses and 2758 API calls were obtained, which

made the attribute vector large and presented the

aforementioned drawbacks. To solve this problem, it was

determined to assign a value to each attribute. This is

calculated by the difference between the percentage of

malicious and benign applications that have a specific

characteristic with respect to the total applications. In this

way, values with a positive sign correspond to the attributes

that occur most often in applications with malicious behavior

and those that have a negative sign correspond to the most

recurrent ones in healthy ones. In this paper it was decided

to select the characteristics where the absolute value of the

values is greater than a certain threshold. In this way, the

attributes with the highest rate of benignity and malice are

accepted. Tables 1 to 4 show a summary of the values

granted to the attributes.

TABLE I. TOP 10 MOST FREQUENT API CALLS IN BENIGN

APPLICATIONS.

API calls Value

java/util_f/GregorianCalendar_file -28

java/security_doc/SecureRandom_file -25

java/util_f/concurrent/ConcurrentLinkedQueue_file -25

java/util_f/Scanner_file -23

java/lang_doc/IndexOutOfBoundsException_file -21

java/lang_doc/Number_file -21

java/IO_f/FilterOutputStream_file -20

java/util_f/concurrent/CopyOnWriteArrayList_file -20

java/util_f/logging/Logger_file -19

java/nIO_f/channels/FileChannel_file -19

TABLE II. TOP 10 MOST FREQUENT API CALLS İN MALİCİOUS

APPLİCATİONS.

API calls Value

java/util_f/zip_rar/Deflater_file 40

java/lang_f/Process_file 36

java/util_f/zip_rar/Inflater_file 35

java/lang_f/InstantiationException_file 31

java/lang_f/ProcessBuilder_file 31

java/lang_f/NoSuchMethodException_file 31

java/lang_f/ClassNotFoundException_file 30

java/net_f/Proxy_file 29

java/IO_f/FileReader_file 29

java/security_f/spec/PKCS8EncodedKeySpec_file 27

TABLE III. TOP 10 MOST FREQUENT PERMİTS İN BENİGN

APPLİCATİONS.

Permissions Value

Com_f.android.vending.billing_file -33

Com_f.android.vending.check_license_file -22

Com_f.google_site.c2dm.permission_app.

receive-file

-17

android.permission_app.collection_photo_file -7

android.permission_app.apply_credentials_file -6

android.permission_app.modify_audio_ file -4

android.permission_app.bluetooth_file -4

android.permission_app.write_sync_ file -4

android.permission_app.read_sync_ file -4

android.permission_app.record_audio_file -3

 TABLE IV. TOP 10 MOST FREQUENT PERMİSSİONS İN

MALİCİOUS APPLİCATİONS.

Permissions Value

android.permission_app.sysm_alert_ file 94

android.permission_app.rece_boot_ file 94

android.permission_app.get_jobs_file 91

Com_f.android.statrt.permission_app.install_

shortcut_file

91

android.permission_app.send_message_file 90

android.permission_app.read_tphone_state_file 74

android.permission_app.receive_message_file 72

android.permission_app.read_message_file 72

android.permission_app.change_wifi_file 71

android.permission_app.change_network_ file 70

III. RESULTS AND DISCUSSION

This section shows an analysis of the results obtained with

each of the SMLTs mentioned above (in abstract) using

permissions and API calls. The dataset generated for

Android MSA detection was evaluated on open-source

WEKA software. WEKA [25] is a software that includes

SMLTs used for data mining tasks. WEKA includes many

tools for data preprocessing, clustering, visualization,

classification, association rules, and, relationship search. In

this context, the success of SMLTs was evaluated according

to accuracy (Accr): TNR (True Negative Rate), TPR (True

Positive Rate), f-measure tests.

FNFPTPTN

TPTN
Accr

 (1)

TPFN

TP
TPR

 (2)

TNFN

TN
TNR

 (3)

FNFPTP

TP
measuref

 (4)

Mijwil: Malware detection in Android OS using machine learning techniques

8

Hither, True Positive (TP) is the number of times that

Android apps that are malicious are detected; False Negative

(FN) is the number of times that malicious applications are

detected normally; False Positive (FP) is the number of

times that normal applications are detected as malicious;

True Negative (TN) gives the number of times that normal

applications are normally detected. The accuracy test

determines the rate of the number of perfectly classified

samples to the total number of samples. TPR shows the

possibility of labeling malicious applications as malicious,

while TNR indicates the possibility of labeling normal

applications as normal. The harmonic average of TPR and

TNR values, f-measure, provides the evaluation of TPR and

TNR together.

In addition, the dataset including of 325 samples applied

in this study was mixed randomly and 80% was determined

as the learning set and the remaining 20% was determined as

the test set. On the other hand, the learning set includes of

183 samples and also the test set includes of 46 samples.

In this paper, classification was made by using a dataset

consisting of normal and malicious apps and SMLTs. The

method that performs the classification process most

successfully with the SMLTs used is determined according

to the Accuracy, TPR, TNR and f-measure tests and the

results are presented in Table 5. From this table, the RF

classifier performance is higher than the others in terms of

determined metrics. As can be noticed from the confusion

matrix in Table 6 for Android MSA detection of the RF

classifier, 20 malicious applications are classified as

malicious. In other words, the TP value of the confusion

matrix is 20. No malicious practice is classified as normal.

So, the FN value in the confusion matrix is 0.2 of the normal

applications are determined to be malicious. This means that

the FP value in the confusion matrix is 2.24 applications that

are normal are classified as normal. This indicates that the

TN value in the confusion matrix is 24.

TABLE V. CLASSİFİCATİON OF RESULTS.

Criterion ACCR TPR TNR f-measure

SVM 84.5% 86% 85.8% 81.9%

ID3 80.7% 80.2% 82.1% 79.9%

NB 91.4% 95% 90.5% 88.7%

RF 96.2% 100% 94.7% 94.9%

TABLE VI. THE CONFUSİON MATRİX OF RANDOM FOREST (RF)

ALGORİTHM

Estimate

Real Malicious Benign

Malicious 20 0

Benign 2 24

When the RF matrix confusion matrix is evaluated in terms

of cost, it can be presented as an absolute success that the

system can detect 20 out of 20 MSAs perfectly. However,

contrary to the fact that 24 of 26 normal applications are

determined to be normal, 2 of them are classified as

malicious and this indicates that the system should be

improved since it will create dissatisfaction for users. In

brief, although the FN value is lower than the FP value in

machine learning, it is necessary to reduce both

classification errors in terms of cost.

IV. CONCLUSIONS

Mobile malware is a constant threat to Android users. As

these devices take center stage in our daily lives, their safety

and protection become more important. Therefore, the

development of effective new techniques for malware

detection should be a priority.

In this paper, MSA was determined with a different

SMLTs on a dataset including of 325 samples in total. In

comparison made on the performance of these algorithms,

the RF classifier was found to be more successful. From the

results obtained, it is understood that SMLTs are an effective

solution for Android MSA detection and that more

successful results can be obtained by developing. In this

paper, significant results were achieved, 96.2% accuracy in

the test stage at best. However, every day the evasion

techniques adopted by the attackers continue to be refined,

which means that work must continue in this direction.

ACKNOWLEDGMENT

I thank the anonymous editors and reviewers for their

useful suggestions to develop this manuscript. Part of this

study was presented orally in the Third International

Conference on Data Science and Applications 2020

(ICONDATA’20).

REFERENCES

[1] M. Sarwa, and T. R. Soomro, “Impact of Smartphone’s on Society”,

European J. of Scientific Research, vol.98, no.2, pp.216-226, 2013.

[2] S. Ali, S. Khusro, A. Rauf, and S. Mahfooz, “Sensors and Mobile

Phones: Evolution and State-of-the-Art”, Pakistan J. of Scie., vol. 66,

no.4, pp.386-400, 2013.

[3] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. T.

Campbell, “A survey of mobile phone sensing”, IEEE Comm.

Magazine., Vol.48, no.9, pp.140-150, 2010.

[4] M. Kedziora, P. Gawin, M. Szczepanik, and I. Jozwiak, “Android

Malware Detection Using Machine Learning and Reverse

Engineering”, Signal, Image Processing and Pattern Recognition

Conf., Sydney, Australia, 22-23 December 2018.

[5] GSMA Report: “The Mobile Economy 2019.pdf”, 2019.

[6] T. Grønli , J. Hansen, G. Ghinea, and M. Younas, “Mobile

application platform heterogeneity: Android vs Windows Phone vs

iOS vs Firefox OS”. IEEE 2014 Advanced Information Networking

and Applications (AINA) Conf., Victoria, Canada,13-16 May 2014.

[7] B. Padhya, P. Desai, and D. Pawade, “Comparison of Mobile

Operating Systems”. Inter. J. of Innovative Research in Computer

and Communication Engineering, vol.4, no. 8, pp.15281-

15286,2016.

[8] P. Unuchek, “SecurityList,” Kaspersky Lab, Available online

:https://securelist.com/pocketcryptofarms/85137/, 2018.

[9] B. Ganesh, A. Chakrabarti, and D. Midhunchakkaravarthy, “A

Survey on Various Mobile Malware Attacks and Security

Characteristics”. Inter. J. of Latest Trends in Engineering and

Technology, vol.8, no.2, pp. 448-454, 2017.

[10] J. Sahs, and L. Khan, “A Machine Learning Approach to Android

Malware Detection”. European Intelligence and Security Informatics

Conf., Odense, Denmark, 22-24 Augusts 2012.

[11] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer , “DL-Droid: Deep

learning based android malware detection using real devices”.

Computers & Security J., vol. 89 , no.1, pp.1-6, 2020.

[12] B. Zohuri, and F. M. Rahmani, “Artificial Intelligence Driven

Resiliency with Machine Learning and Deep Learning Components”.

Inter. J. of Nanotechnology & Nanomedicine, vol. 4, no.2, pp. 1-8,

2019.

[13] T. Tiwari, T. Tiwari, and S. Tiwari, “How Artificial Intelligence,

“Machine Learning and Deep Learning are Radically Different?”.

Inter. J. of Advanced Research in Computer Science and Software

Engineering, vol.8, no.2, pp. 01-09, 2018.

[14] I. Martín, J. A. Hernández, A. Muñoz, and A. Guzmán, “Android

Malware Characterization Using Metadata and Machine Learning

https://securelist.com/pocketcryptofarms/85137/

DATA SCIENCE AND APPLICATIONS, VOL. 3, NO. 2, 5-9, 2020

9

Techniques”. Security and Communication Networks-Hindawi,

Article ID 5749481, pp.1-12, 2018.

[15] S. Rana, C. Gudla, and A. H. Sung , “Evaluating Machine Learning

Models for Android Malware Detection – A Comparison Study”.

Network Communication & Computing (ICNCC) Conf., Taipei,

Taiwan, 14-16 December 2018.

[16] R. Riasat, M. sakeena, C. Wang, A H. Sadiq, Y. J. Wang, “A Survey

on Android Malware Detection Techniques”. Wireless

Communication and Network Engineering (WCNE 2016) Conf.,

Beijing, China, 20-21Novmber 2016.

[17] K. Bakour, H. M. Ünver, and R. Ghanem, “The Android malware

detection systems between hope and reality”. SN Applied Sciences,

1120, August 2019.

[18] W. D. Jie, M. C. Hao, W. T. En, L. H. Ming, and W. K. Ping,

“DroidMat: Android malware detection through manifest and API

calls tracing”. Information Security (Asia JCIS) Conf., Tokyo, Japan,

9-10 August 2012.

[19] M. Al Ali, D. Svetinovic, Z. Aung, and S. Lukman, “Malware

detection in Android mobile platform using machine learning

algorithms” IEEE Infocom Technologies and Unmanned Systems

(Trends and Future Directions) (ICTUS) Conf., Dubai, United Arab

Emirates, 18-20 December 2017.

[20] S. Arshad, A. Khan, M. A. Shah, and M. Ahmed, “Android Malware

Detection & Protection: A Survey, Inter. J. of Advanced Computer

Science and Applications,” vol.7, no.2, pp.463- 475, 2016.

[21] Z. R.Alkindi, M. Sarrab, and N. Alzidi, “Android Application

Permission Model: Issues and Privacy Violation,” Free And Open

Source Software (Fossc’2019) Conf., February 2019.

[22] X. Liu, and J. Liu, “A Two-layered Permission-based Android

Malware Detection Scheme”. Mobile Cloud Computing, Services,

and Engineering Conf., Oxford, UK, 8-11 April 2014,

[23] X. Jiang, B. Mao, J. Guan, and X. Huang, “Android Malware

Detection Using Fine-Grained Features,” Scientific Programming-

Hindawi, vol. 2020, Article ID 5190138,

[24] H. Fereidooni, M. Conti, D. Yao, and A. Sperduti, “ANASTASIA:

ANdroidmAlware detection using STaticanalySIs of Applications”.

IFIP New Technologies, Mobility & Security (NTMS) Conf., Larnaca,

Cyprus, 21-23 Novmber 2016.

[25] M. Hall, E. Frank, G. Holmes, and B. Pfahringer, “The WEKA Data

Mining Software: An Update”. SIGKDD Explorations, Vol. 11, no.1,

pp.10-18, 2009.

